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Problem Statement

• Some natural phenomena can be measured
without harming the environment:
– Temperature

– Rainfall

– Humidity

• Others, require destructive instrumentation:
– CO2 flux from single plant,

meadow, or soil

The site at James Reserve where mosscam is located
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Proposal

• Construct a procedure that uses an imager to estimate
phenomena that other sensors cannot measure

• Evaluate this procedure in the context of specific
ecological applications
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Challenges

• Field lighting conditions are variable
– Illumination spectra changes hourly during the day

– Daily spectra change over the course of a year

– Results in unstable image features

• Approach: Reverse the effect of changing
illumination before extracting image features

9am 10:30am 12pm 1:30pm
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Challenges

• Not all image features have meaning with
respect to the target ecological signal

• Approach: Use the spectral reflectance of the
subject as the image feature; easily verified in
the field in the laboratory

Edge Detection

Color Histogram
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Challenges

• Using distribution (like reflectance spectra) as
independent regression inputs results in poor
performance

• Approach: Reformulate regression algorithms
to use high-dimensional, highly structured
data as input

window
Wavelength

Wavelength
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Challenges

• Since the procedure is trained using lab data,
and little or no data can be collected in the field,
verifying that our estimates are accurate is
difficult.

• Approach: use observable system
characteristics, not suitable for measurement, to
validate accuracy

Measure
Coverage
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Planned Contributions

• Application evaluated image-based sensor
toolkit: A procedure to correlate images to
ecological signals of interest using a series
best-of-breed computer vision, image
processing, and statistical learning
algorithms.

• High-dimensional, highly structured data
as regression inputs

• Field-robust algorithms and methodology
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Process Overview

1. Estimate the incident illumination in the scene

2. Transform the image to be under a reference illuminant

3. Estimate the subject’s spectral reflectance using color
image features

4. Estimate the target signal

1 3

2

4
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State of Current Work

• A system for performing (1), (2), and (3) is operational
but requires further tuning and evaluation

• Step (4) is formulated but requires generalization

• End-to-end validation is only formulated

1 3

2

4
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Device Calibration: Physical Model of Image Formation

• rk = response of the kth sensor

• w = bandwidth of device
• E(λ) = incident spectral power distribution

• S(λ) = subject’s relative spectral reflectance

• Rk(λ) = the sensitivity of the kth sensor
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Device Calibration: Modeled Image Formation

• Discretize the bandwidth and rewrite in matrix notation
• Model E(λ) and S(λ) using functional PCA

• Results in 6 unknowns (we and ws)

This system is under-constrained.
Estimate the spectra in sequence.
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Device Calibration: Estimating Incident Illumination

Color By Correlation (Finlayson et. al.)
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Device Calibration: Lighting Transformation

• Given some E(λ) found previously, we can compute Tlight

• This assumes that R(λ) = δk   k = {R, G, B}

• Though unrealistic, this assumption has been shown to
hold for cameras presented with “reasonable” light
sources (like daylight)
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Device Calibration: Estimating Spectral Reflectance

• Unlike lighting estimation, we have less
insight into the relationship between the
spectral reflectance model and the image’s
color coordinates.

• Estimate the 3 model parameters using non-
linear regression

• Use chromaticity coordinates as input

regression 1

regression 2

regression 3

ws[1]

ws[2]

ws[3]
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Modeling the Target Signal

• We’ve completed device calibration

• Now, we model the target signal (4) using subject’s
spectral reflectance (the output of device calibration)

1 3

2

4
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Modeling the Target Signal

• We would like to use high-dimensional, highly
structured data as regression inputs

• Results in:
– polynomial explosion in runtime

– curse of dimensionality

Sample moss relative spectral reflectance
to be use in CO2 modeling
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Modeling the Target Signal

• Approximate the data as a mixture of
location-scale distributions.

• How does this help?
– Error function only depends on the location of an

example relative to the threshold

– Requires we keep track of intersections (which is
faster than computing all thresholds)
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Modeling the Target Signal

• Keeping track of the error is simply a matter of
choosing a threshold CDF and checking for
intersections with other examples.

Possible threshold in similar colors One threshold’s (yellow) CDF
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Modeling the Target Signal

• Intersections can be found
quickly, if the input can be
modeled as:
– A set of distributions with

related means and variances

– A set of distribution mixtures
with fixed mean and variance
and varying weights

• In these cases we can find
the “next” intersection in O(1)
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Modeling the Target Signal

• Current regression runtime: O(nk2)
– n = number of features

– k = number of examples

• For inputs which meet those criteria, the
modified algorithm’s runtime: O(nh + k)
– n = number of distribution features

– h = number of discretized buckets per distribution

– k = number of examples



22

Model Validation

• Types of Validation:
– Magnitude of estimates

– Temporal correctness

• Common techniques
– Corroborate estimates with easily observable

characteristics

– Incorporate sensors aside from the imager

– Compare estimates to results from less controlled
experiments
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Process Overview (refined)

• Training data must be acquired to build this process:
– The incident lighting in the field, E(λ)

– The possible reflectance of the subject, S(λ)

– The “appearance” of the system for measured values of the
target signal: S(λ), Temperature, and PAR
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Application: Measuring Moss Photosynthesis

• There are no available sensors
• Methods suggested by

previously ecological studies
have insufficient temporal
resolution

Ecologists want to determine the
effect of short summer rain events

on the moss’ ability to survive

Photosynthesis begins to occur
5 minutes after being hydrated

16:45

16:50

Tortula princeps
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Evaluation: Experimental Setup

1. Collect moss from JR

2. Hydrate moss and
allow to dry over time

3. Collect samples:
a. illumination

b. spectral reflectance

c. high-quality images

d. low-quality images

a
b

c d

Samples acquired every 15 min
for ~6 hrs (23 samples total)



26

Evaluation: Incident Illumination Modeling

• Measured illumination (left) is similar to D65 although
it is slightly bluer

• Model (by Judd et. al.) fits well (right top), with a
slight temporal component to the error

• Even the worse error has minimal error and correct
characteristic shape (right bottom)
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Evaluation: Estimating Incident Illumination

• Accuracy of the Color by
Correlation algorithm
becomes reasonable (top)
once enough training
examples are used

• With 12 training examples,
we find that error (bottom)
clusters near zero

• Interestingly, performance
was comparable with and
without JPEG compression
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Evaluation: Lighting Transformation

• Images of a reference object
(MacBeth color chart) shift over
the course of the day (top)

• We visualized this change using
the 2D Jenson-Shannon
divergences of all pairs of images
– Before the transform (middle), the

image’s divergences large

– After the transform (bottom), the
image’s divergences were
compressed towards zero
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Evaluation: Estimating Spectral Reflectance

• We use only 3 basis functions:
they contain 99.96% of the data

• The variation in the second and
third basis functions (top) is
expected:
– variation low and high in the

spectra caused by the sensor
– variation in the middle caused by

changes in the moss

• Predicted reflectance is quite
good (middle)

• The fit with the maximum error
(bottom) is very close below
700nm
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Incorporating Prior Work: Ecology Research

• Environmental Productivity Index (EPI)
– Measures factors limiting maximum CO2 uptake:

• Temperature

• Moisture

• Light

– Gathered CO2 data in the laboratory

– Tested in the field with Agave plants

– Validated results using newly unfolding leaves

• Use this work as a foundation for model
validation techniques
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Incorporating Prior Work: Experimental Data

• Graham et. al. performed laboratory
experiments on this particular moss plant
– Measured CO2 over a drydown with constant “day”

and “night” temperatures and lighting

– Measured CO2 with varying lighting or temperature

• Use these accurate measurements to train
our models

Moss in a temperature
controlled chamber Infrared gas analyzer
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Other Applications

• Measure CO2 uptake in meadows using
NEON flux towers

• Measure CO2 release of soil below the forest
canopy

• Measure particulate matter suspended in a
river channel
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Timeline

1. Reformulate and further test re-lighting (2 mo)

2. Generalize regression modifications (2 mo)

3. Complete moss photosynthesis evaluation (3 mo)

4. Build online system to predict moss
photosynthesis (1 mo)

5. Apply to another application (6 mo)

6. Dissertation Writing (2-3 mo)
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Planned Contributions

• Application evaluated image-based sensor
toolkit: A procedure to correlate images to
ecological signals of interest using a series
best-of-breed computer vision, image
processing, and statistical learning
algorithms.

• High-dimensional, highly structured data
as regression inputs

• Field-robust algorithms and methodology
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Questions?
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Related work

• Illumination Modeling: Judd et. al.

• Illumination Estimation: Finlayson et. al.

• Lighting Transform: Forsynth et. al.

• Regression modification: Johnson et. al.


