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Abstract
Relative spectral reflectance is an illumination invarient

image feature that is related to many ecological phenom-
ena that are difficult to measure, such as plant CO2 up-
take. We describe a procedure to estimate the relative spec-
tral reflectance of known subject using color image features.
Through application, we show that this procedure produces
accurate estimates in the presence of changing field condi-
tions. Using this procedure, we can use imagers as sensors to
measure natural phenomena that cannot be easily measured
using any other available sensing modality.

1 Introduction
There are many important natural phenomena that tradi-

tional sensors cannot measure directly. For example, accu-
rately measuring a plant’s rate of photosynthesis (release or
absorption of CO2) requires encasing part or all of the plant
in a chamber, regulating the air flow, and measuring the com-
position of the air leaving the chamber. When direct mea-
surement is difficult, imagers are the missing input required
to accurately model natural phenomena.

Imagers are typically avoided in traditional sensing appli-
cations because they produce large quantities of uncalibrated
data. The form of calibration required for an imager-based
ecological sensor is dissimilar to that of typical sensors; there
is no conveniently accessible reference that can be used to
calibrate an imager used as a CO2 sensor, for example. We
aim to take the first step in this calibration process: estimate
the spectral reflectance of a known subject using an imager.

We choose spectral reflectance because it had been shown
that CO2 uptake is related to the plant’s spectral reflectance
[5]. Other application have used spectral reflectance to suc-
cessfully distinguish soil from vegitation [11] and clouds
from land and ice sheets [14]. Legleiter et. al. [9] even
used spectral reflectance as the basis for estimating the depth
of a river channel.

In order to estimate the subject’s spectral reflectance, we
must account for the spectral power distribution (SPD) of the
incident light. The general form of this calibration, known as
color constancy [10], has traditionally been difficult. Unlike
the general form, we assume that we have a single subject
illuminated by a varying lighting conditions. We show that
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accurate estimates of a subject’s spectral reflectance can be
derived from images by modeling the possible illumination
and relative reflectance spectra. Further, we show how to
build these models from experimentally acquired data.

We define our procedure and discuss work related to im-
age formation in Section 2. The experimental setup for build-
ing our models is discussed in Section 3. We evalute the
accuracy of our predictions in Section 4. Finally, we draw
conclusions and suggest future work in Section 5.

2 Device Calibration
The purpose of device calibration is to undo the effect of

changing environmental conditions on the image formation
process. Formally, image formation is composed of three
components: the spectral power distribution (SPD) of the in-
cident light E(λ), the relative spectral reflectance of the sur-
face S(λ), and the spectral response of the imaging device’s
sensor R(λ). Assuming the surface is matte or Lambertian,
the response of the imager’s kth sensor to a (lighting, sur-
face) pair over the spectral range w is defined by Equation 1.

rk =
Z

w
E(λ)S(λ)Rk(λ)dλ (1)

For typical visible light imagers, w = (400nm,700nm) spec-
ifying the visible range, and k = 3 corresponding to the red,
green, and blue sensors in the imager. Since common com-
mercial imagers intend for their output to be consumed by
humans, having only three color sensors is reasonable; hu-
man color vision was determined to be a 3-dimensional space
by color matching experiments [2]. That is, the use of three
orthogonal sensors can represent most of the gamut of hu-
man color vision.

This formulation is a bit simplistic. In particular it doesn’t
capture second-order effects attributed to the camera’s lens,
shutter speed, and aperture. We assume that the lens’ distor-
tion is uniform across the image and that the shutter speed
an aperture are set such that the sensor is not saturated. An
effect we can’t ignore is JPEG image compression. This
compression algorithm is both lossy and has a spacial com-
ponent, considering multiple adjacent pixels at a time. We
consider the effects of JPEG compression on this model in
Section 4.
2.1 Model Formulation

We build a 3-dimensional linear model for the surface re-
flectance of the subject using principle component analysis
(PCA) [13]; this results in a set of basis functions B and their
weights w. We can write this in matrix notation (Equation 2)
if we discretize the spectral range into n bins; B is a n×3 ma-
trix, w is a 3×1 weight vector, and Ŝ(λ) is a n×1 vector that
estimates of the surface’s spectral reflectance. Since we are



considering outdoor ecological applications, we can apply
previous work [8] that has similarly defined a 3-dimensional
linear model for daylight (Equation 2) using PCA.

Ŝ(λ)≈ Bsws Ê(λ)≈ Bewe (2)

Once we have models for illumination and relative re-
flectance, we must mitigate the effect of the camera’s shutter
speed and aperture on Rk(λ). We assume that this effect,
causing under- or over- exposure, is uniform across the sen-
sor and that the sensor is never completely saturated (avoid-
ing the loss of information). By using 2-dimensional chro-
maticity coordinates we can compensate for this uniform
change in brightness. The chromaticity space is the projec-
tion of the 3-dimensional color space onto a plane of uniform
brightness, and thus mitigates the effects of exposure. The
chromaticity space we choose is the x and y dimensions of
the xyY color space as defined by CIE.

r ≈ (Bewe)(Bsws)T R (3)

Our resulting model for image formation (Equation 3), has
six unknowns: the we and ws weight vectors. As described,
this system is under constrained since we only have two
equations as defined by the chromaticity coordinates. We
proceed by estimating these unknowns, we and ws, in se-
quence. First, we estimate we to produce the illuminant’s
spectra. Then, we transform the image to place it under a
reference illuminant. From this “registered” image, we esti-
mate ws resulting in Ŝ(λ), an estimate of the subject’s spec-
tral reflectance. We assume that the same camera is used to
produce all of the analyzed images, and thus the effect of
Rk(λ) on the final pixel value is constant across all images.

2.2 Estimating Incident Lighting
There are a number of lighting estimation techniques sug-

gested by the literature [1], each making different assump-
tions about the lighting and subject present in the image. We
assume that our images have a fixed set of possible illumi-
nants (daylight) and a single subject. By using this applica-
tion specific information, the Color by Correlation algorithm
[4] has been shown to slightly out-perform [6] other lighting
esimation algorithms.

To train the Color by Correlation algorithm, we must
compute a correlation matrix representing the probability
that given illuminant was present in a particular image. Each
column of the matrix represents possible illuminant E, and
each row is the log probability Pr(c|E) that a particular chro-
maticity coordinate c would be observed for a subject under
that particular illuminant. Since the chromaticity space has
infinite extent, the space is quantized to make building a cor-
relation matrix feasible.

log(Pr(E|Cim)) ∝ ∑
∀c∈Cim

log(Pr(c|E)) (4)

To test this model, we compute the binary chomaticity vector
of an example image Cim; this vector is 1 for every value that
is present in the image, and 0 elsewhere. Multiplying cor-
relation matrix by an image’s binary chomaticity vector, we
get the log-likelihood that the sample was produced by each

of the possible illuminants assuming uniform prior probabili-
ties Pr(E) and Pr(Cim) (Equation 4). Then, we simply select
the most likely illuminant.
2.3 Changing Illumination

After we’ve estimated the lighting present in a given im-
age, we must transform the images to be under some refer-
ence illuminant. We call this operation re-lighting the image.
Since we are considering outdoor phenomena, we choose
D65 (an approximation of daylight defined by CIE) as the ref-
erence. To build a re-lighting transformation matrix, we as-
sume that the camera’s sensors are sufficiently narrow band-
width such that Equation 1 can be simplified to Equation 5.
That is, they can be modeled as impulse functions at some
wavelength λk, the center wavelength of the camera’s sen-
sor.

rk = E(λk)S(λk) (5)

This assumption is clearly not true of typical cameras. How-
ever, it has been shown [15] that when matte objects are sub-
jected to “reasonable” illuminants (such as daylight), it ap-
pears to hold. Using Equation 5, we can define the diagonal
lighting transformation matrix Tlight , as Equation 6.[ E1(λR)S(λR)

E1(λG)S(λG)
E1(λB)S(λB)

]
=Tlight

[ E2(λR)S(λR)
E2(λG)S(λG)
E2(λB)S(λB)

]
Tlight [i, i] =E1(λi)/E2(λi) (6)

We choose these center wavelengths to be λR = 620nm,
λG = 530nm, and λB = 450nm; these are close to the center
wavelength of the sensors on typical digital cameras [3]. The
Color by Correlation algorithm produces E2(λ) and we have
already assumed that E1(λ) is the standard D65 illuminant.
To re-light the image, we need only compute the diagonal el-
ements of Tlight and then transform each of the image’s pixels
individually.

This formulation only works if we specify E1(λk) and
E2(λk) in absolute terms. However, the spectral power dis-
tribution of an illumination is typically normalized such that
E(λ560) = 100 (as is the case for the D65 specification). This
has the effect of multiplying Tlight by β as defined in Equa-
tion 7.

β =
E2(λ560)
E1(λ560)

·100 (7)

The β term can be factored out of the resulting transformed
image if we use chromaticity coordinates instead of absolute
color coordinates. This is intuitively true since chromaticity
coordinates are designed to be independent of brightness, the
effect for which β compensates. Further, using chromaticity
coordinates is a reasonable requirement as we have already
leveraged chromaticity coordinates to produce a brightness
invariant image for lighting estimation.
2.4 Estimating Relative Spectral Reflectance

We can now estimate the weights ws for the relative spec-
tral reflectance basis functions Bs (see Equation 2). Unlike
lighting estimation, however, we have less insight into the re-
lationship between relative spectral reflectance and the chro-
maticity coordinates. Accordingly, we choose to estimate



Figure 1: Moss at James Reserve during July 2008 after a long dry
period 1(a), left. The experimentally captured images, 1(b), right.

the parameters of our relative spectral reflectance model us-
ing non-linear regression. The input to this non-linear re-
gression will be the 2-dimensional chromaticity coordinates.
Similar to the Color by Correlation algorithm, we quantize
the chromaticity space into n×n bins, using each as feature
in our predictive model. These features are stable between
images since we previously corrected for changes in illumi-
nation using the re-lighting transform.

Our previous work [7] showed that using this technique
produced reasonable results for laboratory data. The dataset
used in that work had consistent illumination since all images
were taken under controlled laboratory lighting. As a result,
it did not require the images to be chromatically registered
using a re-lighting transform.

3 Experimental Setup
We acquired six samples of Tortula princeps, a drought

tolerant moss, from the James Reserve, seen in Figure 1(a).
We hydrated the moss and allowed it to dry for approxi-
mately 6 hours (from 12pm until 6pm), simulating a rain
event in the field. During this drying period, the moss’
spectral reflectance is expected to change. We placed the
moss outside under natural illumination and collected sam-
ples of the incident illumination, the moss’ relative spectral
reflectance, and images containing the moss and MacBeth
Color Checker (seen in Figure 1(b)). Samples were collected
every 15 minutes; in total, 23 samples were collected.

In order to measure both the incident illumination as well
as the plant’s relative spectral reflectance, we used a spectro-
radiometer (Licor 1800). To measure the absolute spectral
power distribution of the incident illumination, we calibrated
the response of the spectroradiometer using a reference tung-
sten illuminant, similar to the CIE A reference. Similarly, the
spectral reflectance of the plant was measured with respect
to same tungsten illuminant. Samples of both the plant and
the incident illumination were taken at 2nm increments from
390nm to 750nm.

Images of moss were taken using two standard consumer-
grade cameras with their auto white-balance settings turned
off. We used a Canon EOS 450D to capture 10MP images in
both RAW format and JPEG format; this camera represents
a relatively high-end imager. Additionally, we used a Pentax
Optio S5z to capture 5MP images in JPEG format; this cam-
era represents a lower-end imager. Each image contained
both the moss sample as well the MacBeth Color Checker
reference; this chart contains 24 color swatches of known
spectral reflectance.
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Figure 2: The spectral power distribution (SPD) of the illumina-
tion measured during the course of the experiment as well as the
CIE standard D65 illuminant is shown in 2(a). The accuracy of the
daylight model built by Judd et. al. [8] for our measured illumi-
nants is plotted against time in 2(b), the red line is the mean and the
grey lines are the first standard deviation. Below, we show the fit
for the sample with the largest RMS error (the 21st sample at 315
minutes).

4 Evaluation
We verified that the illumination we measured using the

spectroradiometer was reasonable by comparing it to the CIE
standard D65 illuminant as seen in Figure 2(a). Each of these
spectra have been normalized such that E(λ560) = 100. We
see that our measured spectra have the same characteristic
shape as D65 although they are slightly bluer late in the day;
they contain more power in the 400nm–500nm range than
D65. This similarity suggests that our measurements are pro-
ducing reasonable spectra.

Using the daylight model derived by Judd et. al. [8], we
computed the weights (we) of the basis functions (Be), as de-
fined in Equation 2, for our measured illuminants. As shown
in Figure 2(b), the RMS error of this model does follow some
time dependent trend through the course of the day. Initially,
this might suggest that the model is missing some relevant
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Figure 3: Error of the Color by Correlation model derived from
images of moss and the MacBeth Color Checker taken with the
Pentax Optio S5z camera under varying illumination.

information. However, we see that the fit for the example
with the largest absolute RMS error still is quite good. This
further confirms that our measurements are accurate.

The 2-dimensional chromaticity distributions of the sam-
pled images (quantized into 32 × 32 bins) are stored in ma-
trices that we convert into row-major ordered vectors. Each
vector is normalized by the number of pixels in the im-
age and associated with the illumination measured using the
spectroradiometer; these become the columns in the corre-
lation matrix. Recall, to produce the log-likelihood that ex-
ample image has been illuminated by particular illumination
(Equation 4), we simply multiply the correlation matrix by
the binary chromaticity vector.

The training set for the Color by Correlation algorithm is
selected at random from the set of experimentally obtained
samples. We hand segmented the images from both cameras
into an images containing only the moss and images only
containing the MacBeth Color Checker. Figure 3 shows av-
erage RMS residual error between the predicted illumination
and the measured illumination as a function of the training
set size. Interestingly, for large training set sizes (n ≥ 16),
the moss images had a slightly lower error than the images
containing the MacBeth Color Chart. This is odd because the
moss’ reflectance is changing over time, where as the chart’s
reflectance is constant. In these cases approximately 70% of
samples were used for training, so we believe this is simply
an effect of over-training the model.

Though not shown, the model trained using both raw and
JPEG images taken from the Canon camera produced similar
residual error. This interesting result shows that JPEG com-
pression has a minimal effect on the accuracy of the Color
by Correlation algorithm when applied to these data. We can
understand this result by considering how JPEG compression
works. It computes the discrete 2-dimensional cosine trans-
form of each 8× 8 pixel block in the image, producing the
spatial frequency of colors within a given image block. Then,
it discards some information about the high frequency sig-
nals, retaining most information about the lower frequency
signals. For both the moss and the MacBeth Color Chart, the
spacial frequency in all three color dimensions is relatively
low. This suggests that JPEG compression would have mini-
mal effect on the chromaticity-based signals we are using to
build our model.
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Figure 4: 4(a) The Jenson-Shannon Divergence, before and after
re-lighting, of all pairs of images containing the MacBeth Color
Chard under varying daylight illumination. Optimally, all diver-
gences would be zero after the lighting transformation. 4(b) The
basis functions, as determined by functional PCA for the relative
spectral reflectance of the moss as it dries over time.

Once we obtain an accurate estimate of the image’s light-
ing we can correct for that illuminant using Tlight (see Equa-
tion 6). We test this transform on our segmented images
containing the MacBeth Color Chart because its spectral re-
flectance doesn’t change (unlike the moss). We to compute
the 2-dimensional Jenson-Shannon Divergence of the dis-
cretized chromaticity coordinates for all pairs of examples.
We expect the divergences to small since the subjects are
identical.

Histograms of these divergences are shown in Figure 4(a).
As we can see, the lighting transformation compresses the
distribution of divergences towards zero as expected. An un-
fortunate consequence is that it has also increased the vari-
ance among the previously well clustered examples. We hy-
pothesize that this is caused by inherent error in estimating
our sensors as impulse functions, a poor choice of center
wavelengths, or color alterations resulting from JPEG image
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Figure 5: The RMS residual error of the spectral reflectance pre-
dicted by our procedure is shown above; the red line is the average
error and the grey lines are the first standard deviation. Below, we
show the predicted spectral reflectance of the observation with the
largest error (observation 4 at time 60 minutes).

compression.
After the images have been transformed we must pre-

dict the parameters of the relative spectral reflectance model
(shown in Figure 4(b)). We have chosen to use only the first
three basis functions for our model because they account for
99.96% of the variance contained in the moss’ measured rel-
ative spectral reflectance. The first basis function, plotted in
black, represents the average spectral reflectance across all
samples. The second and third basis functions, plotted in
red and green respectively, show the type of variation seen.
In particular, we see that there is significant variation in the
blue (400nm – 450nm) and red (675nm – 750nm) parts of the
spectrum. We expect some variation near 400nm because it
is near the minimum wavelength our spectroradiometer can
measure. It is not clear what caused the variation around
700nm. We suspect it was due to drift in the spectroradiome-
ter’s sensors during the course of the experiment.

Given this model, we must predict weights of these basis
functions (ws from Equation 3). We do this by training three
regression-tree based models, one for each parameter, using
the 2-dimensional chromaticity coordinates from the images
previously registered by re-lighting. We trained this estima-
tion model using 12 samples, a value that produced reason-
able results for the lighting estimation. The RMS residual
error of this prediction is shown in Figure 5. We can see that
the magnitude of the error is rather large and there are some
rather significant outliers. In comparison, the best possible
values for ws produce a mean RMS residual error of 0.021,
approximately 20 times smaller than the error produced by
the spectral reflectance estimation model.

To better understand this error we plot the measured and
estimated spectral reflectance for the largest outlier, sample

4 occurring at 60 minutes. As we can see in Figure 5, the
fit is quite good. The vast majority of the error comes from
wavelengths greater than 700nm. This error is somewhat ex-
pected since it is present in the model’s basis functions as
well as the original measurements. Still, there is certainly
significant room for improvement. In particular, the error of
this prediction can be reduced by improving the accuracy of
the re-lighting transform.
5 Conclusion

In this paper we have described a procedure to estimate
the relative spectral reflectance of natural subject using an
imager. We have instantiated this procedure to measure the
spectral reflectance of Tortula princeps, a drought tolerant
moss plant, collecting the required data through laboratory
experiments. Finally, we have shown that our proposed pro-
cedure accurately estimates relative spectral reflectance in
the context of this application.

In future work, we plan to use estimated spectral re-
flectance to predict the underlying natural phenomena; in this
case, CO2 uptake. We plan to refine this procedure by iter-
atively computing the models for illumination and relative
spectral reflectance as suggested by [12]. Since the output of
these two models are used together, such iterative modeling
would help to make the prediction of each more accurate in
the presense of likely variation in the other. Finally, to in-
crease the accuracy of image re-lighting, we intend to apply
sensor sharpening techniques to better chromatically register
the images.
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